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Abstract— Recognizing objects in dense clutter accurately
plays an important role to a wide variety of robotic ma-
nipulation tasks including grasping, packing, rearranging and
many others. However, conventional visual recognition models
usually miss objects because of the significant occlusion among
instances and causes incorrect prediction due to the visual
ambiguity with the high object crowdedness. In this paper,
we propose an interactive exploration framework called Smart
Explorer for recognizing all objects in dense clutters. Our
Smart Explorer physically interacts with the clutter to max-
imize the recognition performance while minimize the number
of motions, where the false positives and negatives can be
alleviated effectively with the optimal accuracy-efficiency trade-
offs. Specifically, we first collect the multi-view RGB-D images
of the clutter and reconstruct the corresponding point cloud. By
aggregating the instance segmentation of RGB images across
views, we acquire the instance-wise point cloud partition of the
clutter through which the existed classes and the number of
objects for each class are predicted. The pushing actions for
effective physical interaction are generated to sizably reduce the
recognition uncertainty that consists of the instance segmenta-
tion entropy and multi-view object disagreement. Therefore,
the optimal accuracy-efficiency trade-off of object recognition
in dense clutter is achieved via iterative instance prediction and
physical interaction. Extensive experiments demonstrate that
our Smart Explorer acquires promising recognition accuracy
with only a few actions, which also outperforms the random
pushing by a large margin.

I. INTRODUCTION

Robotic manipulation tasks have been considered to be
challenging due to the complexity caused by the severe
occlusion and high crowdedness in dense clutter, which
usually appears in the practical working environments such
as warehouses. Accurately recognizing all objects in clutter is
general requirements for a wide variety of robotic manipula-
tion tasks including grasping [15], [23], [13], packing [27],
[28], [14], rearranging [6], [29], [9] and many others. For
example, the packing robot is able to present suitable packing
orders and spatial locations in boxes only when perceiving
accurate information of existed classes and corresponding
object numbers for each class [28]. Therefore, it is desirable
to design the visual perception model that is capable of
accurately recognizing all objects in clutter.
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First Push

0 marker, 0 clamp, 2 bottles, 2 meat 
cans, 2 soup cans, 2 plates, 0 box

2 markers, 1 clamp, 2 bottles, 2 meat 
cans, 3 soup cans, 2 plates, 1 box

Second Push

Fig. 1. An example of interactive exploration for object recognition in dense
clutter. Object recognition in clutter aims to predict the existed classes and
the number of objects for each class, which are demonstrated by the text
below the images. Green text represents the correct prediction including
both the class and the number of objects, while the red text means the
incorrect one. By iteratively pushing the clutter, the object recognition
is significantly enhanced by discovering the invisible objects with visual
ambiguity elimination.

In order to strengthen the recognition performance for
objects in dense clutter, visual detection and segmenta-
tion models specifically designed for clutter scenes were
presented [33], [35], where the discriminality of features
for overlapped regions was enhanced for retrieving objects
with significant occlusion. Because of invisible objects that
are completely blocked, the performance is still far from
expected for deployment. The active exploration frameworks
[38], [17], [1] were proposed to search target objects by a
series of actions such as pushing and grasping, where the
learned planner adaptively selects the optimal spatial location
for the actions according to observation of current clutter
scene. Nevertheless, the existing active exploration methods
can only search the given target object, which is not appli-
cable for recognizing all objects in clutter since the target
is not determined until the environment is fully explored.
Moreover, the complicated planner in conventional active
exploration methods results in heavy computational cost and
sizably degrades the efficiency of robot manipulation.

In this paper, we propose the Smart Explorer framework
to interactively explore the clutter for recognizing all objects
accurately. Our Smart Explorer generates the pushing actions
for the clutter with the goal of maximizing the recognition
performance while minimizing the number of motions, so
that the false positives and negatives of recognizing all
objects in clutter are effectively alleviated with the optimal
accuracy-efficiency trade-offs. More specifically, we collect
the multi-view RGB-D images of the clutter and reconstruct
the point cloud, which are leveraged as the visual input of our
Smart Explorer. Then we employ the instance segmentation
model for the multi-view RGB images, which is aggregated
to yield the instance partition of point cloud for the clutter.
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Therefore, the existed classes and the number of objects for
each class are predicted according to the instance segmen-
tation for the point cloud. Since reducing the uncertainty
provides more information for object recognition in clutter,
we generate the start point, orientation and distance of the
pushing actions based on the recognition uncertainty that
consists of instance segmentation entropy and multi-view
object disagreement. Moreover, we also evaluate the spa-
tial constraint between pushing actions and their interacted
regions to guarantee the validity of the physical interaction,
so that the clutter structure can be effectively modified by
physical interaction. Fig. 1 demonstrates an example of
our interactive exploration for object recognition in dense
clutter. Compared with recognizing objects in dense clutter
directly, experimental results on object recognition show
that our Smart Explorer enhances the recall and precision
rates by 16.13% and 9.47% respectively with only 1.67
pushing actions on average, which also outperforms the
random pushing by a large margin. Our contribution can be
summarized as follows:
(1) To the best of our knowledge, we propose the first

framework for recognizing all objects in dense clutter
based on the multi-view RGB-D cameras, which pro-
vides necessary object information for a wide variety of
robotic manipulation tasks such as grasping, packing and
rearranging.

(2) We present the interactive exploration method that ac-
tively pushes the clutter to reduce the prediction uncer-
tainty with spatial relation constraint, which significantly
enhances the recognition accuracy with the optimal
accuracy-efficiency trade-off.

(3) We conduct extensive experiments on the task of object
recognition in dense clutter, and the results indicate
our Smart Explorer can outperform random pushing
by a large margin and sizably increase the recognition
accuracy with only a few actions.

II. RELATED WORK

Object recognition in cluttered scenes: Existing object
recognition for cluttered objects methods can be divided into
two categories: recognition with RGB-D images and point
cloud. For the first regard, many robotic grasping techniques
[26], [37], [21] were equipped with a visual segmentation
module for the planner to select the grasp pose. In order
to segment unseen objects in the clutter for more reliable
visual perception, Xie et al. [35] first acquired the rough
initial mask based on the depth image and then refined the
prediction according to the RGB images. They further uti-
lized graph neural networks to mine the relationship among
objects for more accurate instance mask refinement [34].
Xiang et al. [33] extracted pixel-wise feature embedding
with metric learning techniques, where mean shift clustering
was employed to discovered unseen objects. For object
recognition in cluttered scenes based on point cloud, Tombari
et al. [25] deployed 3D detection and description methods
to match the correspondence between the template and the
scene, followed by Hough vote for evidence accumulation

of centroids. Buch et al. [4] used geometric constraints to
cast full 6 DoF votes with individual correspondence to
enhance the robustness to outliers. Tao et al. [24] leveraged
the local shape descriptors with clustering to select the
correct correspondence, where the cluster index was devel-
oped to verify the transformation hypothesis. However, the
severe occlusion causes invisible objects that are completely
blocked, which significantly degrades the performance of
object recognition in clutter scenes. Our method physically
interacts with the clutter for occlusion alleviation, where the
recognition performance is maximized with least motions to
achieve the optimal accuracy-efficiency trade-off.

Active exploration in visual perception: As part of active
learning [31], active exploration has been widely studied in
visual perception of robotic tasks such as object segmentation
[10], [36], [18], [22], mapping [11], [19], [3], [20] and
target search [38], [17], [1], [8], [16], which observes and
manipulates the object clutter adaptively to extract discrim-
inative information of the scene for subsequent downstream
tasks. For object segmentation, Patten et al. [18] employed
probabilistic segmentation framework where the uncertainty
was used to guide the robot for scene manipulation, and
the scene motion provided additional clue for associating
observed parts to objects. Early works for mapping [3], [20],
[11] targets at maximizing the map information gain via
evaluating the mutual information. Popovic et al. [19] fused
the multi-resolution data with Gaussian Process as priors
to increase the efficiency of informative path planning for
UAVs. Liu et al. [12] utilized the dynamic Gaussian Process
Implicit Surface method [32] to incrementally update the
scene map for mobile picking, and the next-best-view was
calculated by balancing the object reachability for picking
and map information gain for fidelity and coverage. Target
search aims at locating and extracting a known object from
the clutter. Danielczuk et al. [8] modeled the target search as
a Partially Observable Markov Decision Process, where the
actions of push, suction and grasp were iteratively performed
until extracting the target object. The difference between our
task and target search is that we aim at recognizing all objects
without specific targets, which is more challenging without
the priors acquired from the pre-defined targets.

III. RECOGNIZING OBJECTS WITH INTERACTIVE
EXPLORATION

In this section, we first briefly introduce the pipeline
overview of object recognition in dense clutter, and then
detail the pipeline of object recognition including 2D in-
stance segmentation and instance consistency. After that,
we formulate the recognition uncertainty based on instance
segmentation entropy and multi-view object disagreement.
Finally, we present the optimal pushing generation for in-
teractive exploration by recognition uncertainty and spatial
constraint evaluation.

A. Pipeline Overview

The objective of object recognition in clutter is to pre-
dict the existed classes and the corresponding number of
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Fig. 2. The pipeline of our Smart Explorer. The clutter is observed by one overhead and four side-view cameras, and the point cloud collected across
views are partitioned according to the 2D instance segmentation. Moreover, the recognition uncertainty including the instance segmentation entropy and
multi-view object disagreement is computed for the clutter in the top-down direction (vertical view), and the effective pushing actions are generated
according to recognition uncertainty. By iterative object recognition and physical interaction, the object recognition is achieved via predicting the existed
classes and the number of objects for each class based on the instance segmentation of the point cloud.

objects for each category, which provides object information
for downstream manipulation tasks such as packing and
rearranging. To enhance the recognition performance in the
environment with significant occlusion and crowdedness, we
enable the agent to physically interact with the clutter so that
more informative clues are acquired with active exploration.
Meanwhile, the number of actions should be minimized to
achieve the optimal accuracy-efficiency trade-off.

Fig. 2 depicts the overall pipeline of our Smart Explorer.
The clutter is observed by one overhead and four side-view
RGB-D cameras, and the side-view cameras are uniformly
placed in a horizontal plane. The point cloud of the clutter is
obtained by projecting that converted from the depth image
in each view to the world space, which is combined with
the multi-view RGB images as the input for recognizing
objects in clutter. We leverage the instance segmentation
model to obtain the 2D object mask in the multi-view
RGB-D images, which assigns object labels to the clutter
point cloud projecting inside the mask for each view. The
instance segmentation mask for point cloud of each object
is generated by merging point cloud partitions across views
with instance consistency. Consequently, the existed classes
and the number of objects for each class are predicted based
on instance segmentation of the clutter point cloud.

We employ pushing as the action primitive in the in-
teractive exploration, which is implemented by the closed
gripper that moves along with a straight line in parallel
with the tabletop. Since locations with recognition uncer-
tainty composed of instance segmentation entropy and multi-
view object disagreement indicates prediction ambiguity,
the start point, pushing direction and pushing distance are
generated based on the recognition uncertainty with spatial
constraint evaluation to provide the informative visual clues
with high motion efficiency. By iterative object recognition
and physical interaction, the recognition performance for
cluttered scenes is significantly enhanced with alleviated
false positives and negatives.

B. Object Recognition for Cluttered Scenes

We leverage the multi-view RGB-D cameras to obtain
more informative visual clues with larger fields. The point
cloud of the clutter is reconstructed from that collected from
each view. Directly utilizing the 3D point cloud segmentation
framework for instance partition fails to generalize on objects
with shape variation. Therefore, we employ the 2D instance
segmentation framework for RGB images across views to
assign object labels to clutter point cloud projecting inside
the mask. Since the instance masks from different views
may represent the same object, the object consistency across
views should be verified to avoid false positives and negatives
in instance segmentation of clutter point cloud.

We verify the object consistency for different point cloud
partitions across views according to the predicted categories
and geometric relationship, which can be iteratively merged
for those sharing the same semantic labels and similar spatial
occupancy in order to acquire the instance segmentation
masks of the overall point cloud. Denoting the point cloud
of the ith instance in the clutter at the tth merging iteration
as Pt

i , the instance segmentation mask of the point cloud is
updated in the following:

Pt+1
i = Pt

i ∪{SSSk
m|ck

m =C0
i ,dch(SSSk

m,P
t
i )< h} (1)

where SSSk
m means the kth point cloud partition in the mth view.

Meanwhile, ck
m and C0

i demonstrate the predicted class of SSSk
m

and Pt
i respectively. The Chamfer distance between xxx and yyy

is denoted as dch(xxx,yyy), which measures the spatial difference
between the two point sets. The hyperparameter h means the
threshold where point sets with Chamfer distance smaller
than h are regarded from the same instance. Each point cloud
partition across views is regarded as individual instance at
the initialization of merging, and the iteration ends until
no instance is enlarged by point cloud merging. Finally,
the point cloud of the clutter is segmented into multiple
instances with predicted labels. Fig. 3 illustrates the point
cloud mergence across views. Therefore, the existed classes
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Fig. 3. Demonstration of object recognition for cluttered scenes. For each
view, the instance segmentation model for RGB images obtains the object
masks to assign instance labels to the point cloud. The point cloud partitions
across different views are projected to the world space, and those with the
same semantic labels and similar spatial occupancy are merged to acquire
the instance segmentation masks of the overall point cloud. Therefore, the
existed classes and the corresponding number of objects for each category
obtained via the instance segmentation of point cloud are utilized as the
results of object recognition in clutter.

and the corresponding number of objects for each category
obtained via the instance segmentation of point cloud are
utilized as the results of object recognition in clutter.

C. Uncertainty of Object Recognition in Clutter

High recognition uncertainty indicates ambiguous visual
clues in perception, which usually leads to incorrect pre-
dictions without sufficient confidence. Reducing recognition
uncertainty benefits object recognition in dense clutter by
enhancing prediction informativeness. Since we acquire the
prediction of object recognition in dense clutter via 2D
instance segmentation and object consistency verification, we
define the recognition uncertainty based on the instance seg-
mentation entropy and the multi-view object disagreement.

The recognition uncertainty is employed to generate push-
ing for interactive exploration, and the pushing action is im-
plemented by moving the closed gripper along with a straight
line in parallel with the tabletop. Therefore, the instance
segmentation entropy map for RGB images from different
views should be projected into the top-down direction for
evaluating the recognition uncertainty:

U seg
i j =

K

∑
k=1

∑
rs

uk
rs · I(Ptd(pk

rs)⊂ ptd
i j ) (2)

where U seg
i j demonstrates the instance segmentation entropy

for the pixel in the ith row and jth column of the top-down
view, and Ptd(x) shows the coordination where the center
of the pixel x is mapped to the top-down view. pk

rs and
ptd

i j respectively represent the pixel in the rth row and sth
column of the kth view and that in the ith row and jth column
observed from the top-down direction. Moreover, I(x) means
the indicator function that equals to one for true x and zero
otherwise. The instance segmentation entropy contributed by
pk

rs is defined in the following:

uk
rs = ∑

t
utk,de

rs +utk,se
rs (3)

=−∑
t
(

C

∑
c=1

ptk,de
rs,c log ptk,de

rs,c − (ptk,se
rs, f log ptk,se

rs, f + pk,se
rs,b log ptk,se

rs,b ))

Segmentation Entropy 0.2
1.2 2.3 1.5

0.8

box
box background

pearcan Object Disagreement

6.0
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Fig. 4. Computation of recognition uncertainty including instance seg-
mentation entropy and multi-view object disagreement based on (2) and (4)
respectively. For the former component, the instance segmentation entropy
in different views where the pixels are projected to the same location in
the top-down direction is summed to demonstrate the entropy map. For
the latter regard, the predicted foreground labels of pixels that occupy the
same location in the top-down direction are counted to reveal the object
disagreement that indicates the object occlusion.

where utk,de
rs and utk,se

rs represent the entropy of object de-
tection and foreground segmentation respectively for the tth
bounding box containing pk

rs during instance segmentation.
ptk,de

rs,c means the probability of the tth bounding box includ-
ing pk

rs being classified into the cth class, and ptk,se
rs, f and

ptk,se
rs,b respectively stand for the foreground and background

probability in the same bounding box for segmentation.
The entropy of object detection depicts the uncertainty for
assigning the bounding box to a certain class, where high
detection entropy indicates ambiguous existence of objects
[30]. Meanwhile, the entropy of foreground segmentation
within the bounding boxes also reveals the ambiguity of the
pixel being classified into the detected objects or the back-
ground, and high entropy also demonstrates the uncertain
object occupancy of pixels. As shown in (2), the entropy
contributed by pixels whose centers are mapped inside the
same pixel in the top-down view is summed to demonstrate
the overall instance segmentation entropy for subsequent
pushing generation.

The object disagreement across views also depict the
difference of objects that occupy the same pixels in the
top-down view due to the occlusion. Therefore, pixels
observed in the top-down direction with high multi-view
object disagreement are regarded to have high recognition
uncertainty due to the invisibility of occluded objects. The
object disagreement is defined by counting the predicted
foreground classes of pixels whose center is projected to the



same location in the top-down view:

Uob j
i j = N({ck

rs|Ptd(pk
rs)⊂ ptd

i j }) (4)

where Uob j
i j represents the multi-view object disagreement of

the top-down view pixel in the ith row and jth column, and
ck

rs means the predicted category of the pixel in the rth row
and sth column from the kth view. Meanwhile, N(s) stands
for the number of non-repeating elements in the set {s}. By
counting the predicted labels for pixels across views that are
projected to the same location in the top-down perspective,
the object disagreement that reveals the occlusion in the
clutter contributes to the overall recognition uncertainty.
Fig. 4 shows an example of computing the uncertainty
composed of instance segmentation entropy and multi-view
object disagreement. Finally, the recognition uncertainty can
be written as follows:

Ui j =U seg
i j +λUob j

i j (5)

Similarly, Ui j stands for the recognition uncertainty of the
pixels in the ith row and jth column for the top-down
view, and λ represents the hyperparameter that controls the
importance of multi-view object disagreement in the overall
recognition uncertainty.

D. Pushing Generation for Interative Exploration
Interactively exploring the cluttered scene is crucial for

recognizing all objects in dense clutter since the severe occlu-
sion and high crowdedness that degrades the informativeness
of visual clues are alleviated. Meanwhile, the interactive
exploration should be efficient to be equipped in a wide
variety of downstream tasks such as packing and rearranging
without sizable latency. Therefore, we leverage the efficient
pushing action for interactive exploration to achieve the
optimal accuracy-efficiency trade-off, which is implemented
by moving the closed gripper along a straight line in parallel
to the tabletop.

The location with high recognition uncertainty requires to
be pushed so that informative visual clues are uncovered for
accurate object recognition in dense clutter with least number
of motions. Let us denote Ai j as the region in the gripper size
with the left-top corner at the ith row and jth column, and
the informativeness score for Ai j can be described by the
average uncertainty of pixels in the region:

Ii j =
1

Ni j
∑

prs∈Ai j

Urs (6)

where Ii j and Ni j stand for the informativeness score and
number of pixels for Ai j respectively. As we expect the
clutter structure can be obviously modified by the generated
pushing actions to achieve high motion efficiency, the spatial
constraint that the start point of pushing should be low is
required for informative visual clue discovering. With the
height map from the overhead RGB-D camera, we present
spatial constraint evaluation metric to assess the validity
score in different locations:

Vi j =− max
prs∈Ai j

hrs (7)

where Vi j demonstrates the validity score for the region Ai j,
and prs and hrs respectively represent the pixel and the
corresponding height in the rth row and sth column. The
validity depicts the maximum height in the candidate region
which is the limitation for gripper decedent. Higher validity
score indicates that the pushing can interact with the target
region more significantly because of the larger contact area
between the gripper and the objects in the target region.
Finally, the start point of pushing is generated with the closed
gripper in A∗i j:

A∗i j = argmax
Ai j

Ii j +ηVi j (8)

where η is the hyperparameter that balances the validity and
informativeness score in optimal selection for the start point
of pushing.

As for the direction for pushing generation, we enumerate
the uncertainty map to select a square in gripper size with
the highest average uncertainty as the target region for
pushing. Leveraging the average uncertainty aims to smooth
the noise caused by data collection and pixel projection,
which is eliminated by surrounding pixels without corrupting
the information carried by the uncertainty map. We utilize
the direction from the start point to the target region as
the pushing direction, which aims to effectively modify the
structure in the region with the highest uncertainty and
provides the informative visual clues. A random direction is
chosen when the start point and the target region are too close
in order to avoid invalid interaction. The pushing distance is
set to a constant and scaled twice if the distance between the
start points of consecutive pushing is less than a threshold.
By iteratively pushing the clutter with interactive exploration,
the severe occlusion among objects and high crowdedness is
alleviated with the optimal accuracy-efficiency trade-offs for
object recognition in dense clutter.

IV. EXPERIMENTS

In this section, we conduct extensive experiments in
simulated environments (PyBullet [7]) to evaluate our Smart
Explorer. The goal of the experiments is to verify that (1) our
object recognition framework for dense clutter can accurately
predict the existed classes and the number of objects for
each class, (2) the interactive exploration by pushing actions
significantly enhance the recognition performance, (3) the
generated pushing actions according to recognition uncer-
tainty and spatial constraint outperforms random pushing
with respect to accuracy and efficiency.

A. Implementation Details

The work space is a rectangular area with the size of
1.50m×1.00m in the simulation environment, and the reso-
lution of each RGB-D vision sensor in the simulated scene is
1440×1024. In the world coordinate, we set the resolution
of each pixel to 2mm and the workspace is discretized as a
grid of 750×500 pixels. Except for the overhead camera, the
four side-view cameras are evenly distributed in a horizontal
plane whose connecting line to the workspace center deviates



Fig. 5. The selected subset of objects in our experiments.

Fig. 6. Visualizations of randomly generated scenes, where the easy (left),
normal (middle) and hard (right) cases contain 10, 15, and 20 instances.

the vertical direction by 60 degrees. The size of the region
covered by the closed gripper is 2.42cm2. In order to further
reduce the computational cost in pushing generation, the
validity and informativeness score shown in (7) and (6) are
only calculated for start point selection in the square of
0.42m2 with the highest average uncertainty.

We utilize the instance segmentation framework Yolact[2]
for RGB image in our Smart Explorer with the segmentation
confidence threshold 0.35, where the IoU threshold to pre-
dict a positive bounding box is 0.8. The Chamfer distance
threshold in (1) that verifies the mergence across different
point cloud partitions is set to be 0.001. The hyperparameters
λ in (5) and η in (8) are determined as 0.1 and 0.5.
For pushing generation, the distance is set to the constant
0.1 and scaled twice when the distance between the start
points of consecutive pushing is less than the pre-defined
threshold 0.05. The interactive exploration stops until the
maximum uncertainty is less than a threshold, and we vary
the threshold to acquire different accuracy-efficiency trade-
offs. The maximum number of interactive exploration steps
is set to 20 to avoid trivial actions.

The clutter scenes in our experiments are all composed
of objects from the YCB dataset [5]. The YCB dataset
contains 79 everyday object models with 600 high-resolution
RGB images for each object, and the texture images and
point cloud templates for each object is also provided. We
select a subset of object classes to construct our scenes to
avoid trivial cases according to the following rules: (1) the
selected classes have high-quality 3D models in order to
prevent sizable noise that significantly harms the segmenta-
tion model, (2) the chosen objects should also achieve good
visibility in depth map to generate the correct point cloud for
object recognition. We finally select 27 object classes in our

TABLE I
THE PERFORMANCE FOR RANDOM CLUTTERS (10-20 INSTANCES),

WHERE #MOTIONS REPRESENTS THE AVERAGE NUMBER OF MOTIONS.

Method P(%) R(%) F1(%) #Motions
Baseline 56.33 74.43 64.13 -
Random 58.62 76.38 66.33 5.00

SCE+Random 63.13 90.57 74.40 5.00
Smart Explorer 77.51 92.23 84.23 5.33

Random 58.64 76.16 66.26 4.00
SCE+Random 60.29 86.23 70.96 4.00
Smart Explorer 74.87 91.23 82.24 4.33

Random 58.63 76.38 66.34 2.00
SCE+Random 59.33 77.43 67.18 2.00
Smart Explorer 65.80 90.56 76.22 1.67

TABLE II
THE PERFORMANCE WITH DIFFERENT CAMERA SETTINGS.

Cameras P(%) R(%) F1(%)
1 Overhead 69.74 72.77 71.22

1 Overhead + 1 Side-view 71.77 77.94 74.72
1 Overhead + 2 Side-view 72.96 77.23 75.03
1 Overhead + 3 Side-view 73.89 81.67 77.58
1 Overhead + 4 Side-view 75.62 82.23 78.79

experiments with about 20 instances for each cluttered scene,
as shown in Fig. 5. In order to train the instance segmentation
model in our Smart Explorer, we collect 1,600 RGB images
from different views and scenes as the dataset. All the
experiments are accelerated with one NVIDIA GeForce GTX
3090 GPU.

B. Evaluation Metrics

We evaluate our Smart Explorer with respect to the recog-
nition accuracy and motion efficiency. For the first regard,
we leverage the precision and recall rate to demonstrate
the performance. The number of true positives is defined
as the number of predicted objects which is no more than
the groundtruth for each class, while the number of false
positives mean the extra ones which surpass the groundtruth.
Meanwhile, the number of false negatives represent the
difference between the groundtruth and predicted numbers
for each class. We also report the F1 score defined as
F1 = 2PR/(P+R) to further evaluate our Smart Explorer on
object recognition, where P and R mean precision and recall
rate respectively. For the latter regard, motion efficiency is
assessed by the mean number of pushing actions.

C. Results and Discussions

We execute pushing actions on an UR5 robot equipped
with parallel-jaw grippers (robotiq85 gripper), where robot
motion planning is implemented by the kinematics module
in Pybullet. In order to demonstrate the effectiveness of
the interactive exploration in Smart Explorer, we compare
our method with the object recognition without pushing
and with random pushing. To verify the importance of
pushing generation based on recognition uncertainty, we
also report the performance with pushing acquired only via
the spatial constraint evaluation (SCE). In order to show
the performance in different accuracy-efficiency trade-offs,
we leveraged three uncertainty thresholds for exploration
termination in pushing action generation.
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Fig. 7. The precision and recall rates for object recognition in dense clutters
with different hardness.

TABLE III
THE PERFORMANCE FOR CHALLENGING CASES (20 INSTANCES WITH

SEVERE OCCLUSION).

Method P(%) R(%) F1(%) #Motions
Baseline 43.09 67.61 52.08 -
Random 44.21 68.98 53.90 7.00

SCE+Random 49.06 73.39 58.35 7.00
Smart Explorer 60.64 86.53 71.19 6.88

Random 43.84 69.10 53.65 3.00
SCE+Random 45.84 70.38 54.99 3.00
Smart Explorer 55.28 82.93 66.18 2.87

Random 43.37 67.83 52.91 2.00
SCE+Random 44.18 69.22 53.94 2.00
Smart Explorer 47.15 76.25 57.85 1.25

1) Random clutters: Objects are dropped sequentially
into the workspace to generate random clutters, where the
landing point of each object is randomly selected. Since the
clutter density is positively related to the difficulty of object
recognition, we set up the clutter with 10, 15 and 20 instances
for easy, normal and hard scenarios for object recognition as
shown in Fig. 6. The experimental results in the random
clutters are shown in Table I, where our Smart Explorer
significantly enhances the precision, recall and F1 score by
9.47% (65.80% vs. 56.33%), 16.13% (90.56% vs. 74.43%)
and 12.09% (76.22% vs. 64.13%) compared with the object
recognition without interaction by taking only 1.67 mean
actions. Fig. 7 also shows the precision and recall rates for
object recognition in dense clutters with different hardness.
Meanwhile, our Smart Explorer outperforms the random
push across different action budget by a large margin, which
indicates the effectiveness of the pushing generation based
on recognition uncertainty and spatial constraint evaluation.
The advantage of our method to the generated pushing only
with spatial constraint evaluation clearly verify that reducing
the recognition uncertainty benefits the object recognition
in clutter by discovering informative visual clues. Table
II demonstrates the performance with different numbers of
side-view RGB-D cameras for visual information collection,
where the side-view cameras are evenly distributed in the
same plane depicted in Section IV-A. The number of motions
are set to 5 for each case, and the object disagreement is not
considered in uncertainty for the observation setting that is
only composed of the overhead camera. The results suggest
that our Smart Explore still achieves promising performance
in the deployment scenarios where insufficient cameras are
provided for visual perception.

Fig. 8. Visualizations of eight challenging cases. Objects in each scene
are manually placed to expect a higher degree of dense occlusion, where
each case contains about 20 instance objects.

Fig. 9. The precision and recall rates across eight challenging cases, where
the red dashed line represent the average performance of object recognition
without interaction.

2) Challenging clutters: To further verify the effective-
ness of our Smart Explorer for object recognition in dense
clutter, we evaluate our method in eight challenging scene
cases with high object density. The challenging scenarios are
constructed manually with dense occlusion among objects,
where Fig. 8 visualizes the challenging cases respectively.
Table III depicts the average performance of different strate-
gies including the precision, recall, F1 score and the mean
number of pushing actions in challenging scenarios. Fig. 9
demonstrates the counterparts for each case. For the clutter
with extremely high object density, directly recognizing
objects acquires much lower accuracy compared with that
in random clutters. Randomly generated pushing actions
that with spatial constraint evaluation can only strengthen
the accuracy by a negligible margin due to the ignorance
informativeness in different regions to boost recognition. On
the contrary, our Smart Explorer enhances the F1 score by
12.19%(55.28% vs. 43.09%) with only 2.87 mean pushing
actions, which indicates the practicality in realistic appli-
cations with extremely dense clutters. Fig. 10 visualizes
examples of interactive exploration in our Smart Explorer,
where dense regions with the highest ambiguity are broken
up for informative visual clue discovery.



Fig. 10. Visualizations of interactive exploration processes, where each
row shows a sequence in our Smart Explorer. The red arrow depicts the
start point, direction and distance of the generated pushing actions.

V. CONCLUSION

In this paper, we have presented Smart Explorer for object
recognition in dense clutters, where the existed classes and
the number of objects for each class are predicted. We assign
the 2D instance segmentation labels to obtain the instance-
wise point cloud partition for object recognition, and gen-
erate pushing actions for effective interactive exploration to
reduce the recognition uncertainty for informative visual clue
discovery. Iterative recognition and exploration provides the
optimal accuracy-efficiency trade-offs for object recognition
in dense clutter. Extensive experiments have demonstrated
the effectiveness and efficiency of Smart Explorer.
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